

100G VPX Optimization and Interoperability (or How to Live la Vida MOSA for 100G)

ETT 2023

Ivan Straznicky

Curtiss-Wright Defense Solutions

100G VPX and How We Got Here

The VPX Transmission Channel

Backplane

VPX Connectors for 100G

ANSI/VITA 46.30-2020 (Higher Data Rate VPX)

VPX Gen 6 VPX Gen 7 32 50 Gbaud/sec/lane Gbaud/sec/lane **EXPRESS**[®] 200G KR-4 5.0

Beyond 100G

How to build successful, interoperable, high speed MOSA VPX systems

VPX Gen 4-5 (16-25G/lane) VITA 68.3 (Working Group)

Reference SI Model Standard for Gen4 and Higher Speeds

Looking under the hood...

VITA 68.3 Modular Open Standards Approach for 100G Interoperability

#ETT2023

Looking under the hood...

What is a "good" channel?

$COM = 20\log_{10}(As/Ani) > 3 \text{ dB} (IEEE 802.3)$

COM = 20log10(*As/Ani*) > 3.5 dB (VITA 68.3)

Example COM results

VITA 68.3 Channel Type	VITA 68.3 Reference Backplane	VITA 68.3 Reference Module	CW Module Position	COM Results (Pass >3.5 dB)
Reference Long Lossy	16 inch, Low Impedance, Medium via	6 inch, High Impedance, Long via	BC diff pair, Rx victim	>4.5 dB
Reference Long Lossy	16 inch, Low Impedance, Medium via	6 inch, High Impedance, Long via	BC diff pair, Tx victim	>3.75 dB
Reference Med-Long Lossy	12 inch, Low Impedance, Long via	6 inch, High Impedance, Long via	BC diff pair, Rx victim	>4.25 dB
Reference Med-Long Lossy	12 inch, Low Impedance, Long via	6 inch, High Impedance, Long via	BC diff pair, Tx victim	>3.75 dB

#ETT2023

More COM results

- COM results validated with two rounds of VPX Channel testing and optimization
- Correlation exercise between simulations and testing revealed several areas of discrepancy
 - E.g. copper trace impedance variation
- Simulations are now much more accurate and allow for confident what-if analyses
- 100G products will benefit substantially

Greater Connectivity for Data-Centric Digital Convergence

A-PNT

Mission Computing

Radios

EW

Data-Centric Digital Convergence

Other Comms

Streaming Sensor Processing

Summary

100G VPX (Gen 5) results in much higher performance OpenVPX systems

Optimization of the 100G channel is required to achieve this high performance

- 3D electromagnetic simulations
- VPX channel testing
- Correlation between simulations and testing

Interoperability among modules and backplanes is essential for MOSA

• VITA 68.3 (Reference SI Model Standard for Gen4 and Higher Speeds)

Module, Backplane, and System 100G OpenVPX products

